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1. Introduction

The mean-variance model for the portfolio selection problem
pioneered by Markowitz is the most used and well-known tool for
economic allocation of capital. In the previous research, the covariance
matrix of asset returns are usually assumed to be non-singular (see, for
example, Li et al. [14], Korki and Turtle [13], Bick [1], Zhang et al. [26],
and Fang [6]). However, with the increase of asset classes and the rapid
development of the derivatives markets for warrants, options, and
futures, the degenerate portfolio selection can arise from the
multicollinear or correlation between risky assets. Markowitz et al. [16]
also pointed that one can not expect the covariance matrix to be positive
definite in some important applications such as the case without short
sale, where slack variables with zero variance are introduced. Nakasato
and Furukawa [17] show that the degenerate cases can be observed when
the covariance matrix is estimated from the returns series of a few
number of periods, and they also find that a zero-variance portfolio
emerges in the efficient frontier. Nevertheless, there is surprisingly little
literature on such a general situation because conventional treatment

methods are no longer applicable.

Buser [2] was the first to study the problem of portfolio with singular
matrix, and showed that mutual-fund separation theorem still holds
through constructing technically two new funds. Ryan and Lefoll [22]
pointed out the errors existed in the demonstration of Buser [2]. V6R6S
[25] considered the problem with special structure of covariance matrix.
Korki and Turtle [12] developed the limiting investment opportunity set
due to small risk assets, and demonstrated that the limiting result is
similar to the investment opportunity set that arises when two assets are
perfectly correlated. In addition, using simple tensor algebra, Los [15]
investigated the multi-currency investment strategies with singular

strategy risk matrix.

The motivation for this paper comes from the conjecture in Szeg6 [23]
that, there is either arbitrage portfolio or efficient subset of portfolio

when rank of covariance matrix is less than n —1, where n denotes
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number of risky assets. We also note the fact that the number of assets
constituting the practical portfolio is often very small, comparing the
number of candidate assets. For example, Nakasato and Furukawa [17]
showed that the number of active securities is closely to the rank of
covariance matrix. Therefore, an interesting and natural issue is whether
there exist redundant assets in the pool of assets or, equivalently,
whether there exist an asset subset forming the same efficient frontier as
the complete asset set. However, the definition of efficient subset of

portfolio cannot be found in printed literatures so far.

In this paper, we will present an explicit definition of the efficient
subset of portfolio and study how to determine the efficient subset.
Considering econometric testing and applications of efficient subset, we
will also explore the equivalent conditions of efficient subset formulated
by random returns of assets, which can be critical to empirical
investigation on efficient subset and econometric testing for mean-
variance spanning.

The outline of the paper is organized as follows. In Section 2, we will
present some definitions and notations on the problems of portfolio
selection. In Section 3, we show some sufficient and necessary conditions
for determining the efficient subset of portfolio and the relation to mean-
variance spanning.

2. Portfolio Selection Problem Under Degenerate
Mean-Variance Model

Consider a portfolio selection problem with n assets (risky or riskless).

The random return of the j-th asset is denoted by rj. Let o=

(01, @9, -+, ®,) be investment weight vector, where ®; be the fraction

of wealth invested in asset j. Let r = (ry, r9, ==+, 1,,) denote the n-vector

of returns on the n assets, pu = (pq, pug, -, u,,) denote the n-vector of

expected returns on the n assets, and V = (o;;) denote the variance-

nxn
covariance matrix, where prime indicates matrix transposition, and

H; = E(Ti ), Gij = COV(T‘i, T'j), i, ] = 1, 2, e, N
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A portfolio is defined as a vector of the investment weight, and the
return of portfolio is defined by r, = o'r. The expected return and the

risk of a portfolio are, respectively, given by p,, = E(r,) = o'n and 6(20 =

Var(r,) = o'Vo.

Without loss of generality, let S, = {1, 2, ---, n} be the set of all n
assets, and S;, = {1, 2, ---, k} be the subset of S,,. The set of portfolio

based on S, is defined as

W ={o = (0, oy, -, mn)' eR"|1w =1},

and the set of portfolio based on subset S, is defined as
Wk = {(,ok = ((1)1, ®g, -+, O )’ c Rkll'k(l)k _ 1},

where 1=(1,1, -, 1)' is the vector of ones.

We assume the rank of covariance matrix V is arbitrary, that is, the
covariance matrix can be singular or the case of so-called degenerate. If V
is singular, in particular, then the portfolio ® satisfying o'V =0 1is
called the risk-free portfolio. The set of risk-free portfolio on S, is
denoted by

W ={o = (0, 0g, -, (un)’ e R"|1w =1, Vo = 0}.

A portfolio selection problem in the mean-variance context can be

written as
min 62 = o'V
oy = 0 Vo,
st. 0l=1, 2.1)
o'n=rp,
where r, is the given expected return for a risk-averse investor.

p

The optimization problem (2.1) is obviously a quadratic programming
with linear equality constraints. We can solve the problem by using
Lagrange multiplier procedure. The Lagrangian function of the
optimization problem is
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1, ' ,
L(w, M, ko) = Eme—kl(ml—l)—kg(mp—rp).

From the first-order conditions of the Lagrangian function, it follows that

a portfolio ® is mean-variance efficient, if there exist scalars A; and Aq

such that

Vo - 7\41}1 - }.21 = O,
®l-1=0, (2.2)
o'nw—r, =0.
Since V is singular or non-singular, the Moore-Penrose inverse of
matrix will be employed as an important tool of analysis.

Definition 2.1. An n x m matrix X is the Moore-Penrose inverse of a

real m x n matrix A, if
AXA = A, XAX = X, (AX) = AX, (XA) = XA.

We denote the Moore-Penrose inverse of A as A™*.

The vector space generated by the columns of m xn matrix A is

denoted as
M(A) ={y|y = Ax for some x € R" }.

Lemma 2.1 (Dunne and Stone [5]). Let A be an n x n matrix and ¢ be

an n x1 vector. Then

(1) if ¢c € #(A), then

(Atecc) = A" - AfccA”
cAtc+1
Q2)if c ¢ H(A), then

., (1+cA%c)Prcc’Pt  Afcc'Pt + PlecA®
(CIPLC)2 C/PJ_C

(A+cc) = A

where P+ = T — AA™.



58 CHUN-FU JIANG and HONG-YI PENG

When the covariance matrix is singular, using the Moore-Penrose
inverse, Jiang and Dai [10] obtain the analytic solutions of efficient

portfolio and efficient frontier as the following lemma:

Lemma 2.2. For the portfolio selection problem (2.1), if the inequality

u # cl holds for any ¢ € R, then we have
W If1e #AV), ue #(V), then the frontier portfolio is

Ar, — B C - Br
® = pTV+u +TPV+1 + Pte,

where A =1V*1, B=1V*y, C = w'V*y, A = AC - B2, PX = [ - VV*,
and & is any vector in R".
@ If1¢ #(V), and n=p—u1e #\V) for any n € Wy, then the
frontier portfolio is
o=9+(1-91)r,

where 9 is the investment proportion of risky assets, 1-1'S is the

investment proportion of risk-free portfolio n, and

- L Lyyrpl
SZP—MT‘VJrnerlE” = P71 +[pl_uJC,
n'V'y 1P 1P

where &, e R"™ are arbitrary. In particular, the return of risk-free

nPt1
1Pt

portfolio is pu, =

There are other cases, that is, #(u 1) A#(V) = {0} and 1 € #(V),
u ¢ A4 (V). For these cases, we have shown that the efficient frontiers

are formulated by Gz) =0 and cg) =1/ A, respectively. However, it is

impossible to occur under the assumption of non-arbitrage of the risk-free

portfolio with the same returns as the risk-free asset.
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3. Determination of Efficient Subset of Portfolio

3.1. Efficient subset of portfolio

In this section, we investigate the problem of efficient subset, that is,
whether there is a subset of assets such that its mean-variance frontier is
identical to the mean-variance frontier of the complete set S,,.

Let S ={1,2, -+, k} denote the benchmark assets class, and
S,\S, ={k+1,k+2, -, n} denote the additional assets class. Let

k ' n—k '
re =(I‘1,V2,-",7‘k), re :(rk+1’rk+2""’rn)’

and p* =E(r"*), p"* = E@"*). The covariance matrix V can be

partitioned similarly as

\% V;
V- { 1 12]
Va1 Vaa

where V;; = Var(r®), Vo; = Cov(r®, r"*), and Vyy = Var(r® ).

Definition 3.1. Let W and W* be the set of portfolio based on S,
and Sj, respectively. If for any portfolio ® € W, there is o® € W* such
that

E(r' o) < E((r* )'(nk ), Var(r'®) > Var((r® )’cok ),
then we call S;, is the efficient subset of S,,.

Obviously, if S;, is the efficient subset of S,,, then the Definition 3.1
indicates the efficient frontier based on S, is exactly the same as the

efficient frontier based on S,,.

Theorem 3.1. Let S,, = {1, 2, -, n} be the complete set of assets and
S, =11, 2, -, k} be asubset of S,. Then S is an efficient subset of S, ,
if and only if

k
Rank(Vy; p” lk):Rank[VH H L J (3.1)
Vo1 [ 1,
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Proof. To prove the necessity, suppose that S, is the efficient subset
of S,,. Then for any efficient portfolio ©® = (o, ©g, -+, 0 ) € W* based
on subset S}, the expanded portfolio » = (0, ®g, -, ©f, 0, ---, 0) is an

efficient portfolio on S§,. Since o is mean-variance efficient, of

obviously satisfies the equations similar to (2.2), that is,

Vumrk — hapi® = dgp 1y =0,

(0*)1, -1 =0, (3.2)
kY k

(0" ) u* =1, =0,

where Ay, and Xg, are Lagrangian multipliers associated with the

optimization portfolio problem on assets subset Sj,.

On the other hand, the expanded portfolio

’

o0 = (('01’ 0)25 ) (Dki 05 ) O) ’
also satisfies the equation (2.2). Substituting o into (2.2), we have

Vipof —apk - a1, =0,
V21C°,k — " F = a1, = 0,
(0*)1, -1 =0,

(of) p* -rp, =0.

(3.3)

Note that uk #cl, for any c € R, that is, uk and 1 are linearly

independent. From the first equations of (3.2) and (3.3), it is easy to see
that Xlk = 7\.1, 7\,2]{3 = 7\.2.

By this, we show that o” is the solution of Equation (3.2), if and only
if ® is the solution of Equation (3.3), which then implies (3.1).

To prove the sufficiency, suppose that (3.1) holds. For any efficient
portfolio of e WF, following in the analysis of Section 1, there exist
scalars Ay, and A9, such that the Equation (3.2) holds. Combining

Equations (3.2) and (3.3), the sufficiency is straightforward. The proof is
finished.
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3.2. Link to mean-variance spanning

Suppose an investor choose his portfolio from a set of & benchmark

assets denoted by S, ={1,2, -, k}. The issue of mean-variance

spanning introduced by Huberman and Kandel [9] is whether new asset
classes should be added to the benchmark assets. In general, if the mean-
variance frontier of the benchmark assets coincides with the frontier of
the benchmark plus the new asset classes, this is known as mean-
variance spanning. The issue 1s also typically addressed by checking
whether or not the additional asset classes improve the efficient frontier
for the investor. The mean-variance spanning has recently received
considerable attention in the literature. De Roon and Nijman [4] provided
a comprehensive survey of the question of mean-variance spanning and
how it relates to other fundamental concepts like stochastic discount
factors. Cheung et al. [3] derived an analytical solution to the question
that whether the investor should invest in the extra asset classes since
spanning implies equal performance of the benchmark portfolio and the
expanded portfolio.

If the benchmark assets can span the efficient frontier of all assets, it
follows that the set of benchmark assets is an efficient subset of the set of
all assets. Suppose that the covariance matrix V > 0, the necessary and

sufficient conditions of mean-variance spanning were obtained by
Huberman and Kandel [9] as the following:

-1 - -1
Vo Vite® = w % v ity = 1, (3.4)

and were cited in later literatures, such as De Roon and Nijman [4],
Cheung et al. [3], Kan and Zhou [11], and Glabadanidis [7]. However, in
more general cases, the covariance matrix can be singular. If we consider
the problem of portfolio with the risk-free portfolio or risk-free asset, for
example, the covariance matrix of all assets is not invertible. In these
cases, the conditions of mean-variance spanning or efficient subset have
not be addressed in current literatures.

Under mean-variance model, it is obvious that the efficient subset of

portfolio is consistent with mean-variance spanning. According to Lemma

2.2, because of the term of PLE_,, the efficient portfolio is not unique when
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covariance matrix is singular. It is easy to see that the term of PLi does

not change the portfolio frontier when the real vector & is taken in R"

arbitrarily. Let S, ={1, 2, -, n} be the complete set of assets,
S, ={,2 -,k be a subset of S,, and W° be the set of frontier
portfolio on S,,. Let Wfk be the set of risk-free portfolio on S;. Then, we
have the following equivalent definition of efficient subset of portfolio:

Definition 3.2. For any frontier portfolio p € W°, if there exists a

frontier portfolio @ € W such that p, = p p and ®"* =0, then we call

S}, the efficient subset of S,,, where o = ((cok )', (0" " )')

n»

Theorem 3.2. Let S, = {1, 2, ---, k} be an asset subset of S,, = {1, 2,

-+, n}. Then, we have

W Ifle AV), ne #(V), then Sy, is an efficient subset of S,,, if
and only if

Vo Viek = 0", VWi, = 1, (3.5)
@ If1¢ AV),n=p-pu,1eAV) forany n € Wy, then S, is an

efficient subset of S,,, if and only if Wfk is non-empty and

Vo Vi = 7k, (3.6)

k k -k -k
where n* = p" —pplp, n"TY = 0T S upl, g

Proof. (1) From Lemma 2.2, if 1€ #(V), pe #(V), thus the

efficient portfolio is given by
o=MVu+aV1+ Ple, (3.7)

By [GroB [8], Theorem 1], we have



EFFICIENT SUBSET OF PORTFOLIO UNDER ... 63

e {Vﬁ + V1V12Va 1 Var Vit —V1+1V12V2~2.1}
~Vo21Vor Vi1 Voo

. {— Vi1 (ViaZ + Z'Vo1 Vi VﬁZ}

7V, 0
where
Vs = [2 1] {Vﬁ + Vi ViaVih 1 Vo Vi —VﬁvmvzalMZ}
. ~Va2.1Var1 Vi1 Vaa1 I

Z = (I~ Vag1Vey 1 Wor Vil (I + ViiVig(I — Vg 1Vey 1 War Vi1 )7,
Vog1 = Vag = Vo V11 Vis.

Let P = (I-Vy91Vs51)Vo1Vii. Then, we notice that the following
equalities:

(I+PP)l=1-PI+PP)Y'P, PI+PP)!=(+PP)'P, (3.8
hold. From this and some computation, we obtain

I—M+I—V11V1+i - MP
-PM I- V22‘1V2+2‘1 - PMP'

Pt=T1-VvVt= },(3.9)

where M = (I + PP) .
Now, we partition the efficient portfolio
o= ("), ("))
given in (3.6). From (3.8) and the Moore-Penrose inverse V', we have
0" F = Vi1 (ipay + Aolyq) + ZViY (MMk + 7‘21k)+ QE, (3.10)

where

Moy = 0" F = Vo ViR, 19 = 1, - Vo Vi1, and 0 = [‘PM?I

- Vo9.1Vao.1— PMP' ]
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If S, is an efficient subset of S,,, there is some real vector & € R"

such that "% =0 for any target return r,. By the definition of

Vao.1, Z and Q, we know
M(Vizn) © M(Voz), MZ) < M) M (V1) (3.11)
where .# (Va1 )" is the orthocomplement space of .#(Vas 1 ).

From (3.10) and (3.11), the equality ok =0 holding for any n

implies pg 1 = 0 and 157 = 0, or equivalently,

k “k
Vo Vin® = u" ™%, Vo V111, =1, 4.

Thus the proof of necessity is finished. Sufficiency is clear from (3.10) and
(3.11).

(2) In this case, where 1 ¢ .#Z(V), n € .#(V), it follows from Lemma
2.2 that the efficient portfolio is

o=9+1-91)n,
where 9 and © are the same as Lemma 2.2.

Let us partition the frontier portfolio
5= (o5, "4y ),
and the risk-free portfolio
T = ((nk )’, (n"k )’ ),.
Similar to the proof of (1), there is real vector &; € R" such that

97k 0.

On the other hand, notice that ((nk ),, 0, -, 0) e Wy for any risk-free

portfolio m* e Wk , and the following fact
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1 lqq1pl
. +(Pl_P 1P ]E_,z,ézeR"}
1P1 1P1

from Jiang and Dai [10], where W;"’ denotes the set of risk-free portfolio

in S;, as

W]Ze = {mk = ((’01’ W9, -, mk) |1}e®k =1, Vll(ok = 0}.

Hence, if Wfk is non-empty, there is some &, € R” such that z" % = 0.
These facts imply the sufficiency is established, and the proof of necessity
1s easy.
3.3. Link to k-funds separation theorem

The presentation of conditions for the efficient subset in Theorems
3.1~3.2 may be implicit. Now, we will establish the necessary and

sufficient conditions for the efficient subset of portfolio by random returns

of all assets in S,,. The results can be considered as an analogy to k-funds
separation theorem.

Theorem 3.3. Let S, = {1, 2, ---, k} be a subset of the complete set of
assets S, = {1, 2, .-, n}. Then S}, is the efficient subset of S, if and only

if for every i € S,,, thereare B;1, B;a, -+, Bijp such that
k k
1= Zﬁijrj + &, ZBU =1, (3.12)
=1 =1

where &;, a disturbance, satisfies E(g;) = 0, Cov(g;, rj) = 0 for all

S Sn\Sk andjeSk.

Proof. Suppose that there exist B;1, B;2, -, B;; € R such that (3.12)
holds for all i € S,,\S;. Let

’

B; = (Biv, Bia, Blk) B=Bri1 Brias ﬁn) €= (611, Ehr2s oo En) -

(3.13)
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Then, we have r" % = pr* + &, where E(g) = 0, Cov(e, r*) = 0, and

But = u" T BV = Var, Bl =1,
It is shown from Theorem 3.1 that S, is the efficient subset of S,,.

To prove the converse, assume that S, is efficient subset of S,,.

Then, there exists p such that

BlVii 1 Hk]= [V21 1, un_k]-

Let &=pr" —r"". We have E() =0, Cov(e, r*)=pV;; - Vo = 0.
Rewrite the elements of matrix p and random vector ¢ as (3.14). Then,
there exist Bj1, Bija, -+, B;z € R such that (3.12) holds. The theorem
follows.

Let us consider a special case, where S; contains the risk-free asset
rf. Let the 0-th asset be risk-free asset. From Theorem 3.3, then we
obtain immediately the following corollary:

Corollary 3.1. Let S}, = {0, 1, ---, k} be a subset of the complete set of
assets S;, ={0,1, ---, n}. Then S}, is the efficient subset of S,,, if and only

if for every i € S;,, there are B;1, Bia, =+, Bir € R such that
k k
r; = [1 - ZBUJ }J.T[(k) + ZBUY‘] + €&, (3].4)
=1 =1

k
or equivalently, m; = ZBijnj +¢;, where n; =r1; — (k) is the excess
i=1

return of the i-th asset, and ¢; is a disturbance satisfying E(g;) = 0,
Cov(e;, Rj) =0 forall i € S, \S}, and j € Sj,.
Remark 3.1. Let r, and r, be random returns of portfolio a and b,

respectively. Rothschild and Stiglitz [20] define the following semi-order

relation:
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raz=m, & =1, +5 Ele|r,] =0,

where ¢ is a noise term. Obviously, > establishes the preference relation
between r, and n, for risk aversion individual and r, > r, means that r,
is more risky than r, because of the random term in r,. Using the

notations of Corollary 3.1, Rothschild and Stiglitz [20, 21] defined
similarly the efficient subset under Rothschild-Stiglitz risk (RS risk for
simple), and shows that S}, is the efficient subset of S;,, if and only if for

every i € S;,, there exist coefficients u;;, u;9, ---, u;; such that
Ni = UMy + UjgNg + -+ UjpNg + &,
and
E[8i|81r1 + 627‘2 + -+ Skrk] =0,
for any RS efficient portfolio © = (o, g, -+, ®, ), where R; is the same
as Corollary 3.1, and
8 = Upjo1 +Ugj®g + + Uy,  J =12, k.
From Theorem 3.3 and Corollary 3.1, we know that the above

conditions are sufficient for the mean-variance efficient subset, but not

necessary unless the all assets in S}, are RS efficient, which implies
Covle;, r;] =0, for any i € S, \' Sy, j € S}.

Hence, RS efficient subset is a particular case of Theorem 3.3. If £ =1, in

addition, then we have the interesting fact that CAPM formula can be
derived by Corollary 3.1.

Theorem 3.4. Let S, = {1, 2, ---, k} be asubsetof S, ={1, 2, ---, n}.
Assume that there is not any scalar ¢ € R such that p = cl, and for any

i € S,,, there are scalars B;g, B;1, Big, -*+» Bir € R such that

k
1 =Bio + Zﬁijrj- (3.15)
=1
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Then S}, is the efficient subset of S,, if and only if one of the following

conditions is satisfied:

k

) D By =1, for any i € Sy;
=1

and

k

@) Zﬁij # 1, for some i € Sy,.
=1

Proof. For any i e S,,, there exist B;g, B;1, Bia, -+, B;r € R such

that (3.15) holds. Let us denote
By = (B, Bas =5 Br ), Bi2) = (Br+1s Brazs Ba). B= (B), |3'(2))(,

(3.16)

and

BE}) = (B1o> B2os *+> Bko),, BE)Z) = (Br+1,05 Brr2,00 > Bno)l,

po = (65).6)
Thus, we have r = B + Brk, and

Var(r) = Cov(prt + do, r) = {B(nVu B(1)V12} _ {Vn V12:|,

’

(3.17)

B2)V11 BoViz] |Va Voo

(3.18)

E(r) = F(l)} k +{B8)} { b } (3.19)
B )" | Lun k] '

Since Bjo =71; — [Biyry + Bjarg + -+ + Bjprp ] for any ieS,, and
noting that B;y is a scalar, thus Var(B;y) =0, these imply B;; is
equivalent to 1 — (B;; + B;g + -+ + Bjz ) times investment of risk-free asset

or portfolio. Using the assumption of non-arbitrage, we have
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Bio = [1—(Bix +Big + -+ Bir )7y,

forany i € S,,, thatis,

BY) = (W ~ Byl BE = (Luk ~ Bioyli )ry- (3.20)

If S,, does not contain risk-free asset, replacing ry by p,, the return of
risk-free portfolio m, the equalities in (3.24) remain hold. If Wy 1s empty

set, then we have B;; = 0 from the analysis in the following

Substituting (3.20) into (3.19), we obtain

Bon® =n*, Bem® =n""", 3.21)

where 0" = pu* - ey, R =k 1, g

Next, to prove the theorem, we investigate the following four cases:

(l) If B(l)lk = ].k, B(Z)lk = ln—k’ that iS, Bil + BiQ + o+ Bik =1 for
any i € S,,, then from (3.18) and (3.19), we obtain

[Vm 1, ¢ Hn_k] = B(z)[Vn 1 Hk]-
It is easy to see from Theorem 3.1 that S, is the efficient subset of S,,.
() If Buylp =1, that is, there exists ie S, such that
Bi1 + Bjo + - + Bjr # 1, it thus follows that 1, ¢ .#(V7;). Otherwise, if

1, e .#(Vy,), then there is x € R* such that 1), = V;;x. Consequently,

we have
Bo)lr = Bo)V11x = Viix = 1,
which is contradict with )1, # 1.
On the other hand, from the assumption of non-arbitrage, we have

n* e #(Vyy), which implies u* = c1;, for any ¢ € R. Otherwise, there

is some scalar ¢ € R such that p* = c1;,, then we have n* = (c - e .

From (3.21), we obtain
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k

(c=reB)lr = (=1 (=1 Byle = (W7 =171, p). (322

Since Bolr # 1, from (3.22), we have c¢ = rrs thus p = rel, which

contradicts the assumption that there is not ¢ € R such that p = cl.

Let Q =V;; + n*®(n* )’. From above, we have 1, ¢ .#(Q). Applying
Lemma 2.1 yields

' ’ k k au _ 1 1\t _
lk(Vll + lklk +M (T] )) lk = lk(Q + lklk) ]'k =1. (323)

Note that n* e .#(Vy,), #(Vy3) c #(Vy; ). Therefore, we also have

, , Be kN T _
15, (Vi + 1,05 +nF(nt) [ iy =0, (3.24)
r\+
15, (Vi + 1,1 + nk(nk)) Vg =0, (3.25)
r\+
1’,€(V11 +1,1), + nk(nk)) n* =o. (3.26)
Let
A= (Voy + 1,51 + 0" ) (Vig + 1,1, + nnf)". (3.27)

Computing from (3.26) yields
_ ! , r\+
An® = (V21 + 1,1 + "R (") )(Vu + 151 + ﬂk(nk)) n"

R\ A+ k
. ke kY|P k A -k
=V21(V11+1k1k+n(11 ))n U )k,TLkﬂn
1+(n%) A

' k '
Pey(A - LA™ (nf)atm® g
1+ (n*)a™* 1+ (f) At

=n (3.28)

where A = Vi1 + 1,1}, and the second line is owing to the Moore-Penrose

inverse
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ke ky\ A+

' Ro ky\" ko k) A" A

Vs + 12, +n* () ) = (2 e nb(nty) = ar - A0 A (kn,)+k-
1+(n")A™M

Similarly, we can prove AVj; = V51, A1 =1 by using (3.23)-(3.25).
Therefore, S}, is an efficient subset of S,,.

(i) If Bayly = 1p, B2)lx # 1,_%, then S is not efficient subset of

S,. In fact, noting that Bl = ([5'(1), B(2) )'1 # 1, by the similar proof of (ii),
we have 1 ¢ #(V) and 1, € #(Vy;), which implies that the risk-free
portfolio is available in Sj,, but not in S,,. Consequently, S; can not be

an efficient subset of S,,. The proof is thus complete.

Remark 3.2. (i) Under the assumption of Theorem 3.4, it is clear that
the following equality:

Vg1 = Vag — Vo1 V11Vig = 0,

holds. Note that for any frontier portfolio ®, the portfolio risk can be
written in the form

’

k V. 0 k
62 = 0'Vo :{ VkM 11 H Vk}, (3.29)
v 0 Vog 1l v"

VR L, ViiVis || o
Vn—k 0 I, , (Dn—k ’

From (3.29), we can further find

where

o2 = (VEY Vv + (vITR) Vg v = (vEY VR (3.30)

Also note that the case (1) in Theorem 3.4 implies Vo V{11, =1,,_;.

Then, we have

(VF) 1, = (0F) 1 + (0" ) Vg Vi1, = (07) 1, + (0" 7%) 1,5, = 1. (3.31)
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Since o is an arbitrary frontier portfolio, it follows from (3.30) and (3.31)

that v¥ € W* is a frontier portfolio on Sy,

It also happens that the case (1) in Theorem 3.4 does not hold. In this

situation, we use the following transformation:

I 0 V; 0 I A’
SR A O S
A I,r]L O Voo 1L O I,k

where A is defined in Equation (3.27). It is easy to verify
_ k _ ..n-k _ + _
AVip = Vo1, An" =n""", AVip = Vo1 V1Vie, Al =1, 4,

ki Aok, Then, we can prove in the same

similar to (3.28). Let vk = o
way that v# € W* is a frontier portfolio on S;. Moreover, these facts
imply that removing S,,_; does not change the portfolio frontier on S,,.

Consequently, S, is the efficient subset of S,,.

@i1) In Theorem 3.3, we in fact assume that the random terms g;
(i € S,) with zero expectation and finite variance, and the joint

covariance matrix can be derived as the following:

Var(e) = Vog — Vo1 V11Vig = Voo 1,

where ¢ = (gp,1, €449, =5 €, ) - According to the transformation of

portfolio risk similar to (3.30), from Lemma 2.2 and (3.10)-(3.11), we can
see that the sufficient and necessary conditions in Theorems 3.3 and 3.2

are equivalent.

Remark 3.3. According to the definition of efficient subset, it is clear
that the efficient subset is not unique. In other words, there exist many

efficient subsets of S,, in practice. Among them, there exists the efficient
subset with minimal size. Suppose that the set of risk-free portfolio Wy is
empty. It is shown from Theorem 3.2 that efficient subset Sj is the

minimal one, if and only if rank(V') = rank(V;; ) = %, or equivalently,
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Vg1 = Vag = Vo Vii' Vig = 0. (3.33)

On the other hand, if there exists risk-free portfolio = € W, such that

n=un-pl e #Z(V), then S, is the minimal one, if and only if Wfk is

non-

empty and rank(V) = rank(V;;) = k—1. Replacing V™! with

generalized inverse V™ in (3.33), the equality Vo9 = 0 remain holds.
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