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Abstract 

The purpose of this paper is to discuss the problem how to check redundant 
assets for a mean-variance optimizing investor when the covariance matrix is  
the case of degeneracy. We propose a new concept of efficient subset of portfolio. 
We obtain some sufficient and necessary conditions for determining efficient 
subset. These conditions can be employed to decide whether new assets should  
be added to original portfolios. Moreover, the equivalent conditions analogous 
with k-funds separation theorem are derived. The extensions of these results to 
mean-variance spanning with singular covariance matrix are also considered. 
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1. Introduction 

The mean-variance model for the portfolio selection problem 
pioneered by Markowitz is the most used and well-known tool for 
economic allocation of capital. In the previous research, the covariance 
matrix of asset returns are usually assumed to be non-singular (see, for 
example, Li et al. [14], Korki and Turtle [13], Bick [1], Zhang et al. [26], 
and Fang [6]). However, with the increase of asset classes and the rapid 
development of the derivatives markets for warrants, options, and 
futures, the degenerate portfolio selection can arise from the 
multicollinear or correlation between risky assets. Markowitz et al. [16] 
also pointed that one can not expect the covariance matrix to be positive 
definite in some important applications such as the case without short 
sale, where slack variables with zero variance are introduced. Nakasato 
and Furukawa [17] show that the degenerate cases can be observed when 
the covariance matrix is estimated from the returns series of a few 
number of periods, and they also find that a zero-variance portfolio 
emerges in the efficient frontier. Nevertheless, there is surprisingly little 
literature on such a general situation because conventional treatment 
methods are no longer applicable. 

Buser [2] was the first to study the problem of portfolio with singular 
matrix, and showed that mutual-fund separation theorem still holds 
through constructing technically two new funds. Ryan and Lefoll [22] 
pointed out the errors existed in the demonstration of Buser [2]. VöRöS 
[25] considered the problem with special structure of covariance matrix. 
Korki and Turtle [12] developed the limiting investment opportunity set 
due to small risk assets, and demonstrated that the limiting result is 
similar to the investment opportunity set that arises when two assets are 
perfectly correlated. In addition, using simple tensor algebra, Los [15] 
investigated the multi-currency investment strategies with singular 
strategy risk matrix. 

The motivation for this paper comes from the conjecture in Szegö [23] 
that, there is either arbitrage portfolio or efficient subset of portfolio 
when rank of covariance matrix is less than ,1−n  where n denotes 



EFFICIENT SUBSET OF PORTFOLIO UNDER … 55

number of risky assets. We also note the fact that the number of assets 
constituting the practical portfolio is often very small, comparing the 
number of candidate assets. For example, Nakasato and Furukawa [17] 
showed that the number of active securities is closely to the rank of 
covariance matrix. Therefore, an interesting and natural issue is whether 
there exist redundant assets in the pool of assets or, equivalently, 
whether there exist an asset subset forming the same efficient frontier as 
the complete asset set. However, the definition of efficient subset of 
portfolio cannot be found in printed literatures so far. 

In this paper, we will present an explicit definition of the efficient 
subset of portfolio and study how to determine the efficient subset. 
Considering econometric testing and applications of efficient subset, we 
will also explore the equivalent conditions of efficient subset formulated 
by random returns of assets, which can be critical to empirical 
investigation on efficient subset and econometric testing for mean-
variance spanning. 

The outline of the paper is organized as follows. In Section 2, we will 
present some definitions and notations on the problems of portfolio 
selection. In Section 3, we show some sufficient and necessary conditions 
for determining the efficient subset of portfolio and the relation to mean-
variance spanning. 

2. Portfolio Selection Problem Under Degenerate 
 Mean-Variance Model 

Consider a portfolio selection problem with n assets (risky or riskless). 
The random return of the j-th asset is denoted by .jr  Let =ω  

( )′ωωω n,,, 21 "  be investment weight vector, where jω  be the fraction 

of wealth invested in asset j. Let ( )′= nrrr ,,, 21 "r  denote the n-vector 

of returns on the n assets, ( )′µµµ=µ n,,, 21 "  denote the n-vector of 

expected returns on the n assets, and ( ) nnijV ×σ=  denote the variance-

covariance matrix, where prime indicates matrix transposition, and 
( ) ( ) .,,2,1,,,Cov, njirrr jiijii "==σ=µ E  
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A portfolio is defined as a vector of the investment weight, and the 
return of portfolio is defined by .rω′=ωr  The expected return and the 

risk of a portfolio are, respectively, given by ( ) µω′==µ ωω rE  and =σω
2  

( ) .Var ωω′=ω Vr  

Without loss of generality, let { }nSn ,,2,1 "=  be the set of all n 

assets, and { }kSk ,,2,1 "=  be the subset of .nS  The set of portfolio 
based on nS  is defined as 

{ ( ) },1,,, 21 =ω′∈′ωωω=ω= 1n
nW R"  

and the set of portfolio based on subset kS  is defined as 

{ ( ) },1,,, 21 =ω′∈′ωωω=ω= k
k

k
k

kkW 1R"  

where ( )′= 1,,1,1 "1  is the vector of ones. 

We assume the rank of covariance matrix V is arbitrary, that is, the 
covariance matrix can be singular or the case of so-called degenerate. If V 
is singular, in particular, then the portfolio ω  satisfying 0=ω′V  is 
called the risk-free portfolio. The set of risk-free portfolio on nS  is 
denoted by 

{ ( ) }.0,1,,, 21 =ω=ω′∈′ωωω=ω= VW n
nf 1R"  

A portfolio selection problem in the mean-variance context can be 
written as 









=µω′
=ω′

ωω′=σω

,
,1s.t.

,min 2

pr

V
1  (2.1) 

where pr  is the given expected return for a risk-averse investor. 

The optimization problem (2.1) is obviously a quadratic programming 
with linear equality constraints. We can solve the problem by using 
Lagrange multiplier procedure. The Lagrangian function of the 
optimization problem is 
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( ) ( ) ( ).12
1,, 2121 prVL −µω′λ−−ω′λ−ωω′=λλω 1  

From the first-order conditions of the Lagrangian function, it follows that 
a portfolio ω  is mean-variance efficient, if there exist scalars 1λ  and 2λ  

such that 









=−µω′
=−ω′

=λ−µλ−ω

.0
,01

,021

pr

V
1

1
 (2.2) 

  Since V is singular or non-singular, the Moore-Penrose inverse of 
matrix will be employed as an important tool of analysis. 

Definition 2.1. An mn ×  matrix X is the Moore-Penrose inverse of a 
real nm ×  matrix A, if 

( ) ( ) .,,, XAXAAXAXXXAXAAXA =′=′==  

We denote the Moore-Penrose inverse of A as .+A  

The vector space generated by the columns of nm ×  matrix A is 
denoted as 

( ) { } .somefor nxAxyyA R∈==M  

Lemma 2.1 (Dunne and Stone [5]). Let A be an nn ×  matrix and c be 
an 1×n  vector. Then 

(1) if ( ),Ac M∈  then 

( ) ;
1±′

′
−=′±

+

++
++

cAc
AccAAccA  

(2) if ( ),Ac M∈/  then 

( ) ( )
( )

,1
2 cPc

AccPPccA
cPc

PccPcAcAccA
⊥

+⊥⊥+

⊥

⊥⊥+
++

′

′+′
−

′

′′+
+=′+  

where .+⊥ −= AAIP  
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When the covariance matrix is singular, using the Moore-Penrose 
inverse, Jiang and Dai [10] obtain the analytic solutions of efficient 
portfolio and efficient frontier as the following lemma: 

Lemma 2.2. For the portfolio selection problem (2.1), if the inequality 
1c≠µ  holds for any ,R∈c  then we have 

(1) If ( ) ( ),, VV MM ∈µ∈1  then the frontier portfolio is 

,ξ+
∆
−

+µ
∆
−

=ω ⊥++ PV
BrC

V
BAr pp 1  

where ,,,,, 2 +⊥+++ −=−=∆µµ′=µ′=′= VVIPBACVCVBVA 111  

and ξ  is any vector in .nR  

(2) If ( ),VM∈/1  and ( )VM∈µ−µ=η π1  for any ,fW∈π  then the 

frontier portfolio is 

( ) ,1 πϑ′−+ϑ=ω 1  

where ϑ  is the investment proportion of risky assets, ϑ′− 11  is the 
investment proportion of risk-free portfolio ,π  and 

,, ζ








′

′
−+

′
=πξ+η

ηη′

µ−
=ϑ

⊥

⊥⊥
⊥

⊥

⊥
⊥+

+
π

11
11

11
1

P
PPP

P
PPV

V

rp  

where nR∈ζξ,  are arbitrary. In particular, the return of risk-free 

portfolio is .
11
1

⊥

⊥

π
′

µ′=µ
P
P  

There are other cases, that is, ( ) ( ) { }0=µ VMM ∩1  and ( ),VM∈1  

( ).VM∈/µ  For these cases, we have shown that the efficient frontiers 

are formulated by 02 =σω  and ,12 A=σω  respectively. However, it is 

impossible to occur under the assumption of non-arbitrage of the risk-free 
portfolio with the same returns as the risk-free asset. 

 



EFFICIENT SUBSET OF PORTFOLIO UNDER … 59

3. Determination of Efficient Subset of Portfolio 

3.1. Efficient subset of portfolio 

In this section, we investigate the problem of efficient subset, that is, 
whether there is a subset of assets such that its mean-variance frontier is 
identical to the mean-variance frontier of the complete set .nS  

Let { }kSk ,,2,1 "=  denote the benchmark assets class, and 
{ }nkkSS kn ,,2,1\ "++=  denote the additional assets class. Let 

( ) ( ) ,,,,,,,, 2121
′=′= ++

−
nkk

kn
k

k rrrrrr "" rr  

and ( ) ( )., knknkk −− == rr EE µµ  The covariance matrix V can be 
partitioned similarly as 

,
2221

1211





=
VV
VV

V  

where ( ) ( ) ( ).Varand,,Cov,Var 222111
knknkk VVV −− === rrrr  

Definition 3.1. Let W and kW  be the set of portfolio based on nS  

and ,kS  respectively. If for any portfolio ,W∈ω  there is kk W∈ω  such 
that 

( ) (( ) ) ( ) (( ) ),VarVar, kkkk ω′≥ω′ω′≤ω′ rrrr EE  

then we call kS  is the efficient subset of .nS  

Obviously, if kS  is the efficient subset of ,nS  then the Definition 3.1 
indicates the efficient frontier based on kS  is exactly the same as the 
efficient frontier based on .nS  

Theorem 3.1. Let { }nSn ,,2,1 "=  be the complete set of assets and 

kS  { }k,,2,1 "=  be a subset of .nS  Then kS  is an efficient subset of nS , 
if and only if 

( ) .RankRank
21

11
11 









µ
µ=µ

−
−

kn
kn

k
k

k
k

V
VV

1
11   (3.1) 
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Proof. To prove the necessity, suppose that kS  is the efficient subset 

of .nS  Then for any efficient portfolio ( ) k
k

k W∈ωωω=ω ,,, 21 "  based 

on subset ,kS  the expanded portfolio ( )′ωωω=ω 0,,0,,,, 21 "" k  is an 

efficient portfolio on .nS  Since kω  is mean-variance efficient, kω  
obviously satisfies the equations similar to (2.2), that is, 

( )
( )







=−µ′ω

=−′ω

=λ−µλ−ω

,0
,01

,02111

p
kk
k

k
kk

k
k

k

r

V
1

1
 (3.2) 

where k1λ  and k2λ  are Lagrangian multipliers associated with the 
optimization portfolio problem on assets subset .kS  

On the other hand, the expanded portfolio 

( ) ,0,,0,,,, 21
′ωωω=ω "" k  

also satisfies the equation (2.2). Substituting ω  into (2.2), we have 

( )
( )











=−µ′ω

=−′ω

=λ−µλ−ω
=λ−µλ−ω

−
−

.0
,01

,0
,0

2121

2111

p
kk
k

k
kn

knk
k

kk

r

V
V

1
1

1

 (3.3) 

Note that k
k c1≠µ  for any ,R∈c  that is, kµ  and 1 are linearly 

independent. From the first equations of (3.2) and (3.3), it is easy to see 
that ., 2211 λ=λλ=λ kk  

By this, we show that kω  is the solution of Equation (3.2), if and only 
if ω  is the solution of Equation (3.3), which then implies (3.1). 

To prove the sufficiency, suppose that (3.1) holds. For any efficient 

portfolio ,kk W∈ω  following in the analysis of Section 1, there exist 
scalars k1λ  and k2λ  such that the Equation (3.2) holds. Combining 
Equations (3.2) and (3.3), the sufficiency is straightforward. The proof is 
finished. 
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3.2. Link to mean-variance spanning 

Suppose an investor choose his portfolio from a set of k benchmark 
assets denoted by { }.,,2,1 kSk "=  The issue of mean-variance 
spanning introduced by Huberman and Kandel [9] is whether new asset 
classes should be added to the benchmark assets. In general, if the mean-
variance frontier of the benchmark assets coincides with the frontier of 
the benchmark plus the new asset classes, this is known as mean-
variance spanning. The issue is also typically addressed by checking 
whether or not the additional asset classes improve the efficient frontier 
for the investor. The mean-variance spanning has recently received 
considerable attention in the literature. De Roon and Nijman [4] provided 
a comprehensive survey of the question of mean-variance spanning and 
how it relates to other fundamental concepts like stochastic discount 
factors. Cheung et al. [3] derived an analytical solution to the question 
that whether the investor should invest in the extra asset classes since 
spanning implies equal performance of the benchmark portfolio and the 
expanded portfolio. 

If the benchmark assets can span the efficient frontier of all assets, it 
follows that the set of benchmark assets is an efficient subset of the set of 
all assets. Suppose that the covariance matrix ,0>V  the necessary and 
sufficient conditions of mean-variance spanning were obtained by 
Huberman and Kandel [9] as the following: 

,, 1
1121

1
1121 knk

knk VVVV −
−−− =µ=µ 11   (3.4) 

and were cited in later literatures, such as De Roon and Nijman [4], 
Cheung et al. [3], Kan and Zhou [11], and Glabadanidis [7]. However, in 
more general cases, the covariance matrix can be singular. If we consider 
the problem of portfolio with the risk-free portfolio or risk-free asset, for 
example, the covariance matrix of all assets is not invertible. In these 
cases, the conditions of mean-variance spanning or efficient subset have 
not be addressed in current literatures. 

Under mean-variance model, it is obvious that the efficient subset of 
portfolio is consistent with mean-variance spanning. According to Lemma 

2.2, because of the term of ,ξ⊥P  the efficient portfolio is not unique when 
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covariance matrix is singular. It is easy to see that the term of ξ⊥P  does 

not change the portfolio frontier when the real vector ξ  is taken in nR  

arbitrarily. Let { }nSn ,,2,1 "=  be the complete set of assets, 

{ }kSk ,,2,1 "=  be a subset of ,nS  and eW  be the set of frontier 

portfolio on .nS  Let k
fW  be the set of risk-free portfolio on .kS  Then, we 

have the following equivalent definition of efficient subset of portfolio: 

Definition 3.2. For any frontier portfolio ,eWp ∈  if there exists a 

frontier portfolio eW∈ω  such that pµ=µω  and ,0=ω −kn  then we call 

kS  the efficient subset of ,nS  where ( ) ( )( ) .,
′′ω′ω=ω −knk  

Theorem 3.2. Let { }kSk ,,2,1 "=  be an asset subset of { ,2,1=nS  

}., n"  Then, we have 

(1) If ( ) ( ),, VV MM ∈µ∈1  then kS  is an efficient subset of ,nS  if 

and only if 

., 11211121 knk
knk VVVV −

+−+ =µ=µ 11   (3.5) 

(2) If ( ) ( )VV MM ∈µ−µ=η∈/ π11 ,  for any ,fW∈π  then kS  is an 

efficient subset of ,nS  if and only if k
fW  is non-empty and 

,1121
knkVV −+ η=η   (3.6) 

where ., kn
knkn

k
kk

−π
−−

π µ−µ=ηµ−µ=η 11  

Proof. (1) From Lemma 2.2, if ( ) ( ),, VV MM ∈µ∈1  thus the 

efficient portfolio is given by 

.21 ξ+λ+µλ=ω ⊥++ PVV 1   (3.7) 

By [Groß [8], Theorem 1], we have 
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








−
−+= +

++++
+

~
1.221121

~
1.22

~
1.2212111121

~
1.22121111

VVVV
VVVVVVVVVV  

( ) ,
011

1111211211 






 ′′+−+ +

+++

ZV
ZVVVZZVV  

where 

[ ] ,
1.2211211.22

1.22121111211.22121111~
1.22 



 ′










−
−+= +++

++++++

I
Z

VVVV
VVVVVVVVVIZV  

( ) ( ( ) ) ,1
11211.221.22121111211.221.22

−+++++ −+−= VVVVIVVIVVVVIZ  

.121121221.22 VVVVV +−=  

Let ( ) .11211.221.22
++−= VVVVIP  Then, we notice that the following 

equalities: 

( ) ( ) ( ) ( ) ,, 1111 PPPIPPIPPPPIPIPPI −−−− ′+=′+′+′−=′+  (3.8) 

hold. From this and some computation, we obtain 

,
1.221.22

1111 








′−−−
−−+−=−= +

+
+⊥

PPMVVIPM
MPVVIMIVVIP  (3.9) 

where ( ) .1−′+= PPIM  

Now, we partition the efficient portfolio 

(( ) ( ) )′′ω′ω=ω −knk ,  

given in (3.6). From (3.8) and the Moore-Penrose inverse ,+V  we have 

( ) ( ) ,21111.221.21
~

1.22 ξ+λ+µλ+λ+µλ=ω +− Qk
kkn ZVV 11   (3.10) 

where 

[ IPMVVVV kkn
kkn #−=−=µ−µ=µ +

−
+− Qand,, 11211.211211.2 111  

].1.221.22 PPMVV ′−− +  
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If kS  is an efficient subset of ,nS  there is some real vector nR∈ξ  

such that 0=ω −kn  for any target return .pr  By the definition of 

ZV ,~
1.22  and ,Q  we know 

( ) ( ) ( ) ( ) ( ) ,, 1.221.22
~

1.22
⊥⊂⊂⊂ VZVV MMMMM Q   (3.11) 

where ( )⊥1.22VM  is the orthocomplement space of ( ).1.22VM  

From (3.10) and (3.11), the equality 0=ω −kn  holding for any pr  

implies 01.2 =µ  and ,01.2 =1  or equivalently, 

., 11211121 knk
knk VVVV −

+−+ =µ=µ 11  

Thus the proof of necessity is finished. Sufficiency is clear from (3.10) and 
(3.11). 

(2) In this case, where ( ) ( ),, VV MM ∈η∈/1  it follows from Lemma 

2.2 that the efficient portfolio is 

( ) ,1 πϑ′−+ϑ=ω 1  

where ϑ  and π  are the same as Lemma 2.2. 

Let us partition the frontier portfolio 

( ) ( )( ) ,,
′′ϑ′ϑ=ϑ −knk  

and the risk-free portfolio 

( ) ( )( ) .,
′′π′π=π −knk  

Similar to the proof of (1), there is real vector nR∈ξ1  such that 

.0=ϑ −kn  

On the other hand, notice that ( )( ) f
k W∈

′′π 0,,0, "  for any risk-free 

portfolio ,k
f

k W∈π  and the following fact 
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







∈ξξ








′

′
−+

′
=ππ=

⊥

⊥⊥
⊥

⊥

⊥
n

f
P

PPP
P

PW R22,
11

11
11

1  

from Jiang and Dai [10], where k
fW  denotes the set of risk-free portfolio 

in kS  as 

{ ( ) }.0,1,,, 1121 =ω=ω′′ωωω=ω= kk
kk

kk
f VW 1"  

Hence, if k
fW  is non-empty, there is some nR∈ξ2  such that .0=π −kn  

These facts imply the sufficiency is established, and the proof of necessity 
is easy. 

3.3. Link to k-funds separation theorem 

The presentation of conditions for the efficient subset in Theorems 
3.1~3.2 may be implicit. Now, we will establish the necessary and 
sufficient conditions for the efficient subset of portfolio by random returns 
of all assets in .nS  The results can be considered as an analogy to k-funds 

separation theorem. 

Theorem 3.3. Let { }kSk ,,2,1 "=  be a subset of the complete set of 

assets { }.,,2,1 nSn "=  Then kS  is the efficient subset of ,nS  if and only 

if for every ,nSi ∈  there are ikii βββ ,,, 21 "  such that 

,1,
11

=βε+β= ∑∑
==

ij

k

j
ijij

k

j
i rr   (3.12) 

where ,iε  a disturbance, satisfies ( ) ( ) 0,Cov,0 =ε=ε jii rE  for all       

∈i  kn SS \  and .kSj ∈  

Proof. Suppose that there exist R∈βββ ikii ,,, 21 "  such that (3.12) 

holds for all .\ kn SSi ∈  Let 

( ) ( ) ( ) .,,,,,,,,, 2121,2,1
′εεε=′βββ=′βββ=β ++++ nkknkkikiii ……… εβ  

(3.13) 
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Then, we have εβ +=− kkn rr , where ( ) ( ) ,0,Coν,0 == kE rεε  and 

.,, 2111 knk
knk VV −

− ==µ=µ 11βββ  

It is shown from Theorem 3.1 that kS  is the efficient subset of .nS  

To prove the converse, assume that kS  is efficient subset of .nS  

Then, there exists β  such that 

[ ] [ ].2111
kn

knk VV k −
−= µµ 11β  

Let .knk −−= rrβε  We have ( ) ( ) .0,Coν,0 2111 =−== VVE k βεε r  

Rewrite the elements of matrix β  and random vector ε  as (3.14). Then, 

there exist R∈βββ ikii ,,, 21 "  such that (3.12) holds. The theorem 

follows. 

Let us consider a special case, where kS  contains the risk-free asset 

.fr  Let the 0-th asset be risk-free asset. From Theorem 3.3, then we 

obtain immediately the following corollary: 

Corollary 3.1. Let { }kSk ,,1,0 "=′  be a subset of the complete set of 

assets { }.,,1,0 nSn "=′  Then kS′  is the efficient subset of ,nS ′  if and only 

if for every ,nSi ′∈  there are R∈βββ ikii ,,, 21 "  such that 

( ) ,1
11

ijij

k

j
ij

k

j
i rr k ε+β+µ













β−= ∑∑

=
π

=

 (3.14) 

or equivalently, ,
1

ijij
k

j
i ε+ηβ=η ∑

=
 where ( )kii r

π
µ−=η  is the excess 

return of the i-th asset, and iε  is a disturbance satisfying ( ) ,0=εiE  
( ) 0,Cov =ε ji R  for all kn SSi ′′∈ \  and .kSj ′∈  

Remark 3.1. Let ar  and br  be random returns of portfolio a and b, 

respectively. Rothschild and Stiglitz [20] define the following semi-order 
relation: 
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[ ] ,0, =εε+=⇔ aabba rrrrr E  

where ε  is a noise term. Obviously,   establishes the preference relation 
between ar  and br  for risk aversion individual and ba rr   means that br  
is more risky than ar  because of the random term in .ar  Using the 
notations of Corollary 3.1, Rothschild and Stiglitz [20, 21] defined 
similarly the efficient subset under Rothschild-Stiglitz risk (RS risk for 
simple), and shows that kS ′  is the efficient subset of ,nS ′  if and only if for 
every ,nSi ′∈  there exist coefficients ikii uuu ,,, 21 "  such that 

,2211 ikikiii uuu ε+η++η+η=η "  

and 

[ ] ,02211 =δ++δ+δε kki rrr "E  

for any RS efficient portfolio ( ) ,,,, 21
′ωωω=ω n"  where iR  is the same 

as Corollary 3.1, and 

.,,2,1,2211 kjuuu nnjjjj "" =ω++ω+ω=δ  

From Theorem 3.3 and Corollary 3.1, we know that the above 
conditions are sufficient for the mean-variance efficient subset, but not 
necessary unless the all assets in kS′  are RS efficient, which implies 

[ ] .,\anyfor,0,Cov kknji SjSSir ∈∈=ε  

Hence, RS efficient subset is a particular case of Theorem 3.3. If ,1=k  in 
addition, then we have the interesting fact that CAPM formula can be 
derived by Corollary 3.1. 

Theorem 3.4. Let { }kSk ,,2,1 "=  be a subset of { }.,,2,1 nSn "=  
Assume that there is not any scalar R∈c  such that ,1c=µ  and for any 

,nSi ∈  there are scalars R∈ββββ ikiii ,,,, 210 "  such that 

.
1

0 jij

k

j
ii rr β+β= ∑

=

  (3.15) 
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Then kS  is the efficient subset of ,nS  if and only if one of the following 

conditions is satisfied: 

(1)     ;,1
1

nij

k

j
Sianyfor ∈=β∑

=

 

and 

(2)     .,1
1

kij

k

j
Sisomefor ∈≠β∑

=

 

Proof. For any ,nSi ∈  there exist R∈ββββ ikiii ,,,, 210 "  such 
that (3.15) holds. Let us denote 

( ) ( ) ( ) ( ) ( ( ) ( ) ) ,,,,,,,,,, 21212211
′′′=′βββ=′βββ= ++ βββββ nkkk ""  

(3.16) 

and 

( ) ( ) ( ) ( ) ,,,,,,,, 00,20,1
2

002010
1
0

′βββ=β′βββ=β ++ nkkk ""  

( )( ) ( )( ) ., 2
0

1
00

′






 ′

β
′

β=β  (3.17) 

Thus, we have ,0
krr β+β=  and 

( ) ( ) ( ) ( )

( ) ( )
,,CovVar

2221

1211
122112

121111
0 



=








=+=

VV
VV

VV
VV

dk
ββ
ββ

β rrr  

(3.18) 

( ) ( )

( )

( )

( ) .2
0

1
0

2

1









µ
µ=













β

β
+µ








= −kn

k
k

β
β

rE  (3.19) 

Since [ ]kikiiii rrrr β++β+β−=β "22110  for any ,nSi ∈  and 

noting that 0iβ  is a scalar, thus ( ) ,0Var 0 =βi  these imply 0iβ  is 

equivalent to ( )ikii β++β+β− "211  times investment of risk-free asset 
or portfolio. Using the assumption of non-arbitrage, we have 
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[ ( )] ,1 210 fikiii rβ++β+β−=β "  

for any ,nSi ∈  that is, 

( ) ( ( ) ) ( ) ( ( ) ) ., 2
2

01
1
0 fkknfkk rr 1111 ββ −=β−=β −   (3.20) 

If nS  does not contain risk-free asset, replacing fr  by ,πµ  the return of 

risk-free portfolio ,π  the equalities in (3.24) remain hold. If fW  is empty 

set, then we have 00 =βi  from the analysis in the following 

Substituting (3.20) into (3.19), we obtain 

( ) ( ) ,, 21
knkkk −η=ηη=η ββ   (3.21) 

where ., knf
knkn

kf
kk rr −

−− −µ=η−µ=η 11  

Next, to prove the theorem, we investigate the following four cases: 

(i) If ( ) ( ) ,, 21 knkkk −== 1111 ββ  that is, 121 =β++β+β ikii "  for 

any ,nSi ∈  then from (3.18) and (3.19), we obtain 

[ ] ( )[ ] .11221
k

k
kn

kn VV µ=µ −
− 11 β  

It is easy to see from Theorem 3.1 that kS  is the efficient subset of .nS  

(ii) If ( ) ,1 kk 11 ≠β  that is, there exists kSi ∈  such that 

"+β+β 21 ii  ,1≠β+ ik  it thus follows that ( ).11Vk M∈/1  Otherwise, if 

( ),11Vk M∈1  then there is kx R∈  such that .11xVk =1  Consequently, 
we have 

( ) ( ) ,111111 kk xVxV 11 === ββ  

which is contradict with ( ) .1 kk 11 ≠β  

On the other hand, from the assumption of non-arbitrage, we have 

( ),11Vk M∈η  which implies k
k c1≠µ  for any .R∈c  Otherwise, there 

is some scalar R∈c  such that ,k
k c1=µ  then we have ( ) .kf

k rc 1−=η  

From (3.21), we obtain 
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( ) ( ) ( ) ( ) ( ) ( )., 21 knf
kn

kfkfkf rrcrcrc −
− −µ=−−=− 1111 ββ   (3.22) 

Since ( ) ,1 kk 11 ≠β  from (3.22), we have ,frc =  thus ,1fr=µ  which 

contradicts the assumption that there is not R∈c  such that .1c=µ  

Let ( ) .11
′ηη+=Ω kkV  From above, we have ( ).Ω∈/ Mk1  Applying 

Lemma 2.1 yields 

( )( ) ( ) .111 =′+Ω′=′ηη+′+′ ++
kkkkk

kk
kkk V 11111111   (3.23) 

Note that ( ) ( ) ( )., 111211 VVVk MMM ⊂∈η  Therefore, we also have 

( )( ) ,01111 =′ηη+′+′
+
VV kk

kkk 111   (3.24) 

( )( ) ,02111 =′ηη+′+′
+
VV kk

kkk 111   (3.25) 

( )( ) .011 =η′ηη+′+′
+ kkk

kkk V 111   (3.26) 

Let 

( ) ( ) .1121
+−

− ηη+′+ηη+′+= kk
kk

kkn
kkn VVA 1111   (3.27) 

Computing from (3.26) yields 

( )( ) ( )( ) kkk
kk

kkn
kk

k VVA η′ηη+′+′ηη+′+=η
+− 1111 1121  

( )( ) ( )
( )

kn
kk

kk
kkk

kkVV −
+

++
η

η∆′η+

η∆′η
+η′ηη+′+=

1
1121 11  

( ) ( )

( )
( )
( )

kn
kk

kk

kk

k
kk −

+

+

+

+

η
η∆′η+

η∆′η
+

η∆′η+

η∆′−∆
=

11
2 11β

 

,kn−η=  (3.28) 

where ,11 kkV 11 ′+=∆  and the second line is owing to the Moore-Penrose 
inverse 
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( )( ) ( )( ) ( )
( )

.
1

11 kk

kk
kkkk

kkV
η∆′η+

∆′ηη∆
−∆=′ηη+∆=′ηη+′+

+

++
+++

11  

Similarly, we can prove 11 == AVAV ,2111  by using (3.23)-(3.25). 

Therefore, kS  is an efficient subset of .nS  

(iii) If ( ) ( ) ,, 21 knkkk −≠= 1111 ββ  then kS  is not efficient subset of 

.nS  In fact, noting that ( ( ) ( ) ) ,, 21 111 ≠′′′= βββ  by the similar proof of (ii), 

we have ( )VM∈/1  and ( ),11Vk M∈1  which implies that the risk-free 

portfolio is available in ,kS  but not in .nS  Consequently, kS  can not be 

an efficient subset of .nS  The proof is thus complete. 

Remark 3.2. (i) Under the assumption of Theorem 3.4, it is clear that 
the following equality: 

,0121121221.22 =−= +VVVVV  

holds. Note that for any frontier portfolio ,ω  the portfolio risk can be 

written in the form 

,
0

0
1.22

112









ν
ν







′










ν
ν=ωω′=σ −−ω kn

k

kn

k

V
V

V  (3.29) 

where 

.
0

1211 








ω
ω









=









ν
ν

−
−

+

− kn

k

kn

k
kn

k VV
I

I  

From (3.29), we can further find 

( ) ( ) ( ) .111.2211
2 kkknknkk VVV ν′ν=ν′ν+ν′ν=σ −−
ω  (3.30) 

Also note that the case (1) in Theorem 3.4 implies .1121 knkVV −
+ = 11  

Then, we have 

( ) ( ) ( ) ( ) ( ) .11121 =′ω+′ω=′ω+′ω=′ν −
−+−

kn
kn

k
k

k
kn

k
k

k
k VV 11111  (3.31) 
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Since ω  is an arbitrary frontier portfolio, it follows from (3.30) and (3.31) 

that kk W∈ν  is a frontier portfolio on .kS  

It also happens that the case (1) in Theorem 3.4 does not hold. In this 
situation, we use the following transformation: 

,
00

00
1.22

11





 ′











=
−− kn

k

kn

k A
V

V
A

V
I

I
I

I
  (3.32) 

where A is defined in Equation (3.27). It is easy to verify 

,,,, 121121122111 knk
knk AVVVAVAVAV −

+− ==η=η= 11  

similar to (3.28). Let .knkk A −ω′+ω=ν  Then, we can prove in the same 

way that kk W∈ν  is a frontier portfolio on .kS  Moreover, these facts 

imply that removing knS −  does not change the portfolio frontier on .nS  

Consequently, kS  is the efficient subset of .nS  

(ii) In Theorem 3.3, we in fact assume that the random terms iε  

( )nSi ∈  with zero expectation and finite variance, and the joint 

covariance matrix can be derived as the following: 

( ) ,Var 1.2212112122 VVVVV =−=ε +  

where ( ) .,,, 21
′εεε=ε ++ nkk "  According to the transformation of 

portfolio risk similar to (3.30), from Lemma 2.2 and (3.10)-(3.11), we can 
see that the sufficient and necessary conditions in Theorems 3.3 and 3.2 
are equivalent. 

Remark 3.3. According to the definition of efficient subset, it is clear 
that the efficient subset is not unique. In other words, there exist many 
efficient subsets of nS  in practice. Among them, there exists the efficient 

subset with minimal size. Suppose that the set of risk-free portfolio fW  is 

empty. It is shown from Theorem 3.2 that efficient subset kS  is the 

minimal one, if and only if ( ) ( ) ,rankrank 11 kVV ==  or equivalently, 
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.012
1

1121221.22 =−= − VVVVV   (3.33) 

On the other hand, if there exists risk-free portfolio fW∈π  such that 

( ),VM∈µ−µ=η π1  then kS  is the minimal one, if and only if k
fW  is 

non- empty and ( ) ( ) .1rankrank 11 −== kVV  Replacing 1−V  with 

generalized inverse +V  in (3.33), the equality 01.22 =V  remain holds. 
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